Program	: B-Tech In	tegrated (Semester: IV			
Course: Computer Programming-III					Code: BTICO04001	
Teaching Scheme					Evaluation Scheme	
Lecture Hours per week	Practical Hours per week	Tutorial Hours per week	Credit	Theory (3 Hrs, 100 Marks)	Internal Continuous Assessment (ICA) As per Institute Norms (50 Marks)	
3	2	0	4	Marks Scaled to 50	Marks Scaled to 50	

Pre-Requisite:- Knowledge of Basic Computer Systems

Objectives:

 The course will enable the students to understand the basic concepts of procedural and object oriented programming

Course Outcomes: After Successful completion of this course students will be able to

- 1. Develop Java program using basic object oriented concept.
- 2. Design Java programs using concepts of inheritance, packages and interfaces.
- 3. Evaluate and apply appropriate basic exception handling techniques.
- 4. Develop Java programs using concepts of string handling.

Detailed Syllabus

Unit	Description	Duration
1.	Java Fundamentals:	6
	Overview of Java, Using Blocks of code, Lexical Issues, Java Class	
	Libraries , Data Types, Variables and Arrays, Operators, Control	
	Statements.	
2.	Classes and Methods:	7
	Class fundamentals, Declaring Objects, Constructors, Methods,	
	Overloading of methods, nested and inner classes, Recursion, Access	
	control, Static and final variables use, using command-line	
	arguments.	
3.	Inheritance:	7
	Inheritance Basics, method overriding, using abstract classes, using	
	final with inheritance.	
4.	Packages and Interfaces:	6

Packages, Access Protection, Importing packages, Interfaces- Defining an	
Interface, Implementing Interfaces, Applying Interfaces, Variables in	
Interfaces, Interfaces Can Be Extended	
Input/Output:	5
I/O Basics, The Java I/O Classes and Interfaces, Reading Console	
Input, Writing Console Output, Print Writer class, Reading using	
Scanner.	
Exploring java.lang and java.util Packages	7
Java.lang- simple type wrappers, object, math, class.	
Java.util- collection overview, Collection classes and Interface date,	
Random, Calendar, Gregorian Calendar	
Programs using String Handling:	7
String Constructors, Special String operators, Character Extraction, String	
Comparison, Searching Strings and Modifying Strings, StringBuffer class	
and its methods	
Total	45
	Interface, Implementing Interfaces , Applying Interfaces , Variables in Interfaces, Interfaces Can Be Extended Input/Output: I/O Basics, The Java I/O Classes and Interfaces, Reading Console Input, Writing Console Output, Print Writer class, Reading using Scanner. Exploring java.lang and java.util Packages Java.lang- simple type wrappers, object, math, class. Java.util- collection overview, Collection classes and Interface date, Random, Calendar, Gregorian Calendar Programs using String Handling: String Constructors, Special String operators, Character Extraction, String Comparison, Searching Strings and Modifying Strings, StringBuffer class and its methods

Text Book:

1. E Balagurusamy, "Programming with Java: A Primer", TMH, 4th Edition 2010.

Reference Book:

- 1. Herbert Schildt, "Java the Complete Reference", TMH, 8th Edition 2013.
- 2. Poornachandra Sarang, "Java Programming", McGraw Hill 2012.
- 3. Bruce Eckel, "Thinking in Java", 3rd Edition, Pearson Education, 2006.
- 4. Ken Arnold, James Gosling, David Holmes, "The Programming Language", Pearson Education, 4th Edition, 2005.

Term Work:

- 1. Minimum 10 Experiments covering the entire syllabus.
- 2. Two Tests
- 3. Two assignments.

Signature

(Prepared by Concerned Faculty/HOD)

Signature

Program	B. Tech.	(EXTC &	Seme	ester :	IV		
Course:	Basic Ele			Code	: BTICO	04002	
	Teaching	Scheme		E	valuat	ion Sche	me
Lecture Hours per week	Practical Hours per week	Tutorial Hours per week	Credit	Theory (3 Hrs, 100 Mark		Asses As p	al Continuous sment (ICA) er Institute as (50 Marks)
3	2	0	4	Marks Scale 50	ed to	Marks	Scaled to 50

Pre-requisite:

- 1. Theory of semiconductor materials, their atomic structures and properties.
- 2. DC circuit analysis, ac fundamentals.

Objectives:

- 1. Understand the construction, working principle, characteristics and simple applications of basic electronic devices.
- 2. Understand the application of these devices in making advanced circuits like amplifiers and oscillators.
- 3. To impart hands-on experience in assembling and testing circuits.
- 4. Get exposed to inter disciplinary engineering disciplines.

Outcomes: After the successful completion of this course, the student will be able to

- 1. Identify various types of diodes and illustrate simple circuits with diodes.
- 2. Explain bipolar junction transistor (BJT), modes of operation and analyze its applications.
- 3. Describe junction field effect transistor (JFET) and analyze its applications.
- 4. Design amplifiers and switching circuits using BJT and FET.
- 5. Describe different types of power amplifiers and oscillators.
- 6. Illustrate the working of amplifier and oscillator circuits

Unit	Description		
	Description	on	
1.	Diode and its Applications: Introduction to Semiconductor Diode Theory, DC Analysis and Models of diode, AC Equivalent Circuits of diode. Diode Types: photodiode, Light-Emitting Diode, Schottky Barrier Diode, Zener Diode, Temperature Effects, Understanding Manufacturer's Specifications. Applications: Rectifier Circuits - Half Wave and Full Wave Rectification, Filter circuits, Ripple Voltage and Diode Current. Zener Diode Circuits - Zener diode as voltage regulator. Clipper and Clamper Circuits.	15	
2.	Bipolar Junction Transistor: Basic Bipolar Junction Transistor, Transistor Structures, NPN Transistor: Forward-active Mode Operation, PNP Transistor:	15	

1

	Total	45
4.	Oscillators: Positive feedback and basic Principles for Oscillation, Classification of transistor oscillators: Phase-Shift Oscillator, Wien-bridge Oscillator, Colpitts Oscillator, Hartely Oscillator, Crystal Oscillator.	07
3.	Field Effect Transistor: Junction Field-Effect Transistor. JFET Biaisng Methods (fixed bias, voltage divider bias and self-bias). FET amplifier frequency response. Figure of merit of an amplifier.	08
	Forward-active Mode Operation, Circuit Symbols and Conventions, Current-Voltage Characteristics, Non ideal Transistor Leakage Currents and Breakdown, DC Analysis of Transistor Circuits. Basic Transistor Application: Switch, Amplifier. Bipolar Transistor Biasing – Bias Stability, Fixed Bias, Collector-to-Base Bias, Voltage Divider Bias. Understanding Manufacturer's specifications. BJT amplifier frequency response. Figure of merit of an amplifier.	

Text Books:

- 1. Donald A. Neamen, Electronic Circuit Analysis and Design, McGraw Hill International, 2nd Edition, 2001.
- 2. David A. Bell, Electronic Devices & Circuits, Prentice Hall India Pvt. Ltd, 5th Edition, 2008.

Reference Books:

- 1. Donald Schilling & Charles Belove, "Electronic Circuits Discrete and Integrated", McGraw Hill International, 3rd edition, 1989.
- 2. Martin Roden, Gordon Carpenter, William Wieserman, "Electronic Design",
- Shroff. Publishers, 4th edition, 2002.

 3. Robert Boylestad& Louis Nashelsky, "Electronic Devices & Circuit Theory", Pearson Education India 9th Edition, 2007.
- 4. B.L. Theraja, "Fundamentals of Electrical Engineering and Electronics", S. Chand & Co., 2nd Edition, 2004.

Term Work:

- 1. At least ten laboratory experiments
- 2. Two term tests

3. Assignments based on the whole syllabus, duly recorded and graded.

Signature

(Prepared by Concerned Faculty/HOL

Signature

Program: B. Tech. Integrated (Computer				ter)	Semester: IV
Course:	Data Str	uctures		***************************************	Code: BTICO04003
	Teaching	Scheme		1	Evaluation Scheme
Lecture Hours per week	Practical Hours per week	Tutorial Hours per week	Credit	Theory (3 Hrs, 100 Marks)	Internal Continuous Assessment (ICA) As per Institute Norms
3	2	0	4	Marks Scaled to 50	Marks Scaled to 50

Pre-requisite: Computer Programming –I(BTIAB02005), Computer Programming-II (BTICO03001)

Objectives: To provide knowledge of data structures and its type

Course Outcomes: After successful completion of this course, students will be able to

- 1. Explain concept of ADT and recursion
- 2. Implement linear data Structures
- 3. Implement non-linear data structures
- 4. Differentiate various searching and sorting algorithms

Detailed Syllabus:

Unit	Description	Duration
1.	Introduction to Data Structures:	7
	Introduction to theory of data structures, Data representation,	
	Abstract data types, Data types, Arrays, Structures, Concept of	
	Recursion, Recursive programs Comparison of Recursive and	8
	Iterative Programs.	
2.	Linear Data Structures: Singly Linked Lists, Double linked list,	12
	Stacks, Queues, Circular queues, Priority queues, Applications of	
	Linear data structures.	
3.	Non - Linear Data Structures : Trees - Binary Tree , Traversals,	8
	Binary Search Tree operations, Threaded Binary Tree,	
	Application of trees: Huffman Algorithm, Expression Trees,	
	BTree Searching	
4.	Non-linear Data structures : Graphs- Basic definitions,	
	Representation of graphs in memory, Graph traversal - Breadth	6
	first search and Depth First search, Application of graphs -	
	Shortest path, minimum spanning tree	

5.	Sorting and Searching: Sorting: Basic definitions, Bubble sort,	12
	Selection sort, Insertion sort and Radix sort and their efficiency.	
	Searching: Basic search techniques: sequential searching,	
	Efficiency of sequential searching, binary search, Hashing	
	Methods, Collision Resolution	
	Total	45

Text Books:

- 1. Reema Thareja, Data Structures using C, Oxford University press.
- 2. Seymour Lipschutz, "Data Structures", Schaum's Outlines, Tata McGRaw Hill, 2006

Reference Books:

1. Richard F. Gillberg, Behrouz A. Forouzen "Data Structures – A Pseudo Approach with C " Cengage Publication

Term Work:

Minimum 10 experiments based on syllabus

Minimum 2 class tests

As per department and ICA norms - Practical exam will be conducted.

Signature

(Prepared by Concerned Faculty/HO)

Signature

SVKM's NMIMS

Mukesh Patel School of Technology Management & Engineering

Program	B. Tech.	Integrated	(Comput	er) Semes	ter: IV	
Course:	Enginee	ring Mathe	matics-II	Code:	BTICO04004	
	Teaching	Scheme		Evaluation Scheme		
Lecture Hours per week	Practical Hours per week	Tutorial Hours per week	Credit	Internal Continuous Assessment (ICA) As per Institute Norms (50 Marks)	Term End Examinations (TEE) Theory (3 Hrs, 100 Marks)	
3	0	2	4	Marks Scaled to 50	Marks Scaled to 50	

Objectives:

- To provide an understanding of Matrices and differential equations in technical subjects.
- To impart knowledge of Beta & Gamma functions and double integrals, its applications to solve engineering problems.

Outcomes: After completion of the course, students would be able to:

- Solve system of linear equations
- Evaluate problems using Beta and Gamma functions
- Analyse suitable method to solve differential equations
- Relate the concepts of double integral to solve engineering problems.

Detail	ed Syllabus: (per session plan)	1
Unit	Description	Duration
1.	Matrices:	12
	Rank of a matrix, Rank by Normal form and Echelon form,	
	Reduction of a matrix A to normal form PAQ, Linear dependence	
	and independence of rows and columns of a matrix over real field.	
	Applications: Solving system of linear homogeneous and non-	
	homogeneous equations using Cramer's rule, matrix inversion method, reduction to echelon form.	
2.	Beta and Gamma functions:	08
	Definition of Beta and Gamma functions and their properties;	
	Relation between Beta and Gamma functions; Duplication	
	formula.	
3.	Ordinary Differential Equations:	15
	Definition of differential equation, order and degree of	
	differential equation, formulation of differential equation.	
	Solution of differential equation of first order and first degree:	
	Variable separable method, reducible to variable separable method, Homogeneous differential equation, reducible to	
	homogeneous differential equation, exact differential equation	
	and those which can be reduced to exact form using integrating factor (four rules), Linear differential equations, Bernoulli's	
	differential equation.	

SVKM's NMIMS

Mukesh Patel School of Technology Management & Engineering

	Solution of Linear differential equations of higher order with constant coefficients: Complementary functions, Particular integrals of the differential equations of the type $f(D)y = X$ where $X = e^{ax}$, $\sin(ax + b)$, $\cos(ax + b)$, x^m , $e^{ax}V(x)$, $xV(x)$. Applications of differential equations in modelling: First-order	
	Equations, Free Mechanical Oscillations, Forced Mechanical Oscillations.	
4.	Double Integration: Double integration in cartesian and polar co-ordinates, evaluation of integrals over a given region, change of order of integration, change of co-ordinate system, application of double integration to compute area, mass of a lamina and volume.	10
	Total	45

Text Books:

- 1. Robert Wrede (2010), Murray Spiegel, Schaum's Outline of Advanced Calculus, Third Edition.
- 2. B. S. Grewal (2013), "Higher Engineering Mathematics", Khanna Publishers.

Reference Books:

- 1. Erwin Kreyszig (2010)," Advanced Engineering Mathematics", Wiley Eastern Ltd, 10th edition.
- 2. Howard Anton (2012), "Calculus", Wiley, 10th edition.
- 3. G. Birkhoff and G. C. Rota, Ordinary Differential Equations (2003), 4th Edition, Wiley Singapore Edition.
- 4. Alan Jeffrey (2003), Handbook of Mathematical Formulas and Integrals, *Academic Press*, 3rd edition.

Term Work:

As per institute norms.

Signature

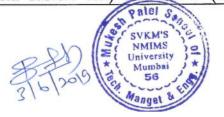
(Prepared by Concerned Faculty/HOD

Signature

SVKM's NMIMS

Mukesh Patel School of Technology Management & Engineering

Program: B. Tech. Integrated (Computer)				Semest	Semester: IV	
Course: Engineering Physics				Code:	BTICO04005	
Teaching Scheme				Evaluation Scheme		
Lecture Hours Per week	Practical Hours per week	Tutorials Hours per week	Credit	Internal Continuous Assessment (ICA) As per Institute Norms (50 Marks)	Term End Examinations (TEE) Theory (3 Hrs, 70 Marks)	
2	2	0	3	Marks Scaled to 50	Marks Scaled to 50	


Objectives

 To enable the students understand the basic principles of physics, making them meet the needs of engineering and technology.

Outcomes: After completion of the course, students would be able to :

- Apply the concept of interference, diffraction in various engineering applications.
- Understand the quantization effect in reduced dimensional materials and their consequences.
- Implement the concepts of clean energy for power generation.
- Illustrate the usage of nanomaterial in various applications.

Unit	Description	Duration
1.	Optics:	08
	Interference: Analytical treatment of interference. Interference in	
	thin film in reflected system. Wedge shaped film. Newton's rings	
	and applications. Diffraction: Fraunhoffer's diffraction at single slit,	
	double slits, N Parallel slits (multiple slits). Diffraction grating,	
	resolving power of grating, dispersive power of grating.	
2.	Quantum physics:	08
	The origin of quantum theory, Blackbody radiation, Wein's law, Rayleigh- Jeans Law, Stefen's law, Plank's theory, dual nature of radiation.	
	Wave nature of Matter: De Broglie's hypothesis, Davisson-Germer Experiment, the double slit experiment with particles, the need for a wave function, Born's interpretation of the wave function. Wave Packets and Uncertainty Principle: General statement of Heisenberg's Uncertainty Principle, Energy-Time and Position-momentum uncertainty relation and its applications	
3.	Energy technology:	06
	Need for clean energy, different methods for obtaining clean energy viz. nuclear energy (including basics of nuclear physics like fission and fusion etc.) solar cells (including conventional and Nano	

	Total	30			
	Tunneling Microscope, Atomic Force Microscope.				
	idea). Scanning and Transmission electron microscopes, Scanning				
	applications, drug delivery, IC technology), Nano- toxicity (basic				
	nanotechnology (scratch resistance coatings, clothing, antimicrobial				
	nanotubes, graphene, quantum dots, applications of				
	Surface plasmon resonance, some basic Nano materials like carbon				
	material properties differ as the size is reduced: Coloumb Blockade,				
	07 1				
	Definition of nanotechnology, quantum confinement effect [how the				
4.	Introduction to Nanotechnology:	08			
	Advantages and limitations of each method.				
	material based solar cells), hydrogen fuels and wind mills.				

Text Books:

- 1. Jenkins and White (2013), Optics, MC Graw Hill.
- 2. Arther Beiser (2009), Concept of Modern Physics, Tata McGraw Hill, 6th edition.

Reference Books:

- 1. Halliday and Resnick (2014), Fundamentals of Physics, Wiley India, 10th edition.
- 2. L. I. Schiff (1968), Quantum Physics, McGraw Hills.
- 3. V. V. N. Kishore (2009), Renewable Energy Engineering and Technology A Knowledge Compendium, *TERI Press*.
- 4. Sulabha K. Kulkarni (2011), Nanotechnology: Principles and Practices, Springer.
- 5. Richard P. Feynman (2011), Feynman lectures on physics, *The New Millennium Edition*.
- 6. Dattu R Joshi (2010), Engineering Physics, Tata McGraw Hill, 1st Edition.

Term work:

As per Institute norms.

Signature

(Prepared by Concerned Faculty/HOD

Signature

Program: B. Tech. Integrated (Computer)				Semester: I'	V	
Course: Numerical Techniques				Code: BTIC	Code: BTICO04006	
Teaching Scheme				Evaluation Scheme		
Lecture Hours Per week	Practical Hours Per week	Tutorial Hours Per week	Credit	Internal Continuous Assessment (ICA) As per Institute Norms (50 Marks)	Term End Examinations (TEE) Theory (3 Hrs, 100 Marks)	
3	0	2	4	Marks Scaled to 50	Marks Scaled to 50	

Objectives:

 To bring awareness of various numerical techniques to solve Engineering problems.

Outcomes:

After completion of the course, students would be able to:

- Analyse error in numerical data.
- Solve algebraic, transcendental and system of linear equations using different numerical techniques.
- Understand the concept of interpolation and regression.
- Apply the techniques learnt in numerical differentiation and integration to solve engineering problems.

Evaluate ordinary differential equation numerically.

Unit	Description	Duration
1.	Introduction to Numerical Computing:	02
	Introduction, Types of Errors: Absolute error, Relative error,	
	Percentage error, Round-off error, Truncation error.	
2.	Roots of Equations:	10
	Bisection Method, False Position Method, Newton-Raphson	
	Method, Secant Method, Convergence of Numerical Methods.	
3.	Systems of Linear Algebraic Equations:	06
	Gaussian Elimination Method, Gauss Jordan Method, Gauss Seidel	
	Method, Jacobi Method.	
4.	Interpolation:	07
	Finite Differences, Forward Differences, Backward Differences,	
	Newton's Forward Interpolation, Newton's Backward	
	Interpolation, Lagrange's Interpolation. Application of this	
	technique to estimate data type such as income, distance,	
	production etc.	
5.	Curve Fitting:	03
	Method of Least Square to fit the straight line and the parabola.	
6.	Numerical differentiation & Integration:	09
	Derivatives using Forward and Backward difference formula,	
	Trapezoidal Rule for Numerical Integration, Simpson's 1/3 Rule,	

	Simpson's 3/8 Rule. Application to estimate the distance covered in given time and volume of a solid.	
7.	Solution to Ordinary differential equations:	08
	Picard's method, Taylor series method, Euler's method, Fourth-Order Runge-Kutta method.	
	Total	45

Text Books:

1. E. Balagurusamy (2008), Numerical Methods, Tata-Mc Graw Hill.

Reference Books:

- 1. S. S. Sastry (2007), Introductory methods of Numerical Analysis, PHI, 5th edition.
- 2. B. S. Grewal (2010), Numerical Methods in Engineering & Science with Programs in C & C+ +, *Khanna Publishers*.
- 3. John Heinbockel (2004), Numerical Methods for Scientific Computing, *Trafford Publishing*.

Term Work:

As per institute norms.

Signature

(Prepared by Concerned Faculty/HOD)

Signature