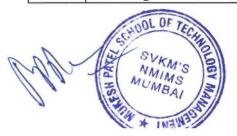
Progra	m: B. Tech. I	ntegrated (Mechanic	al)	Semester: II	I
Course	/Module: M	lanufacturii	ng Proces	ses - I	Module Code	e: BTIME03001
	Teaching	Scheme			Evaluation	Scheme
Lectu re (Hou rs per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Assess	l Continuous sment (ICA) arks - 50)	Term End Examinations (TEE) (Marks- 100 in Question Paper)
3	0	0	3	Marks	Scaled to 50	Marks Scaled to 50

Pre-requisite: Workshop Practice - I & II (BTIME01007 & BTIME02004)

Objectives:


- To introduce different manufacturing processes like casting, welding, forging, rolling, extrusion, drawing, machining etc.
- To impart knowledge of industrial applications of various processes, equipment used in manufacturing.

Outcomes:

After completion of the course, students would be able to:

- Select appropriate process of casting based on design of component.
- Classify and explain the different metal forming processes.
- Recommend suitable types of joining processes with reference to product design.
- Understand the operations and construction of lathe.
- Identify and eliminate different defects in manufacturing processes.

Detail	ed Syllabus: (per session plan)	
Unit	Description	Duration
1	Metal Casting:	10
	Pattern Making: Types of patterns, allowances, colour coding;	
	Foundry practices	
	Moulding sands: types, properties, preparation and testing of	
	sand. Core boxes, core making, types of cores and their	
	manufacturing; Gating system - runner and risers;	
	Moulding processes: shell moulding, CO2 moulding, investment	
	casting, die casting, centrifugal casting and continuous casting;	
	Study of various defects in castings.	
2	Forming processes: Cold and hot working	14
	Rolling: Principle and mechanism, types of rolling and their	
	applications, defects in rolling.	
	Forging: Classification of forging processes, basic categories and	
	methods of forging, heat treatment of forged parts. Extrusion: Hot	
	And cold Extrusion, Equipment, Estimation of extrusion force,	
	defects In extruded parts; wire and tube Drawing: Metal Stamping	
	And Forming, blanking, piercing, bending, deep drawing, roll	
	forming, shear forming and flow Forming.	

	Press tools: Different type of presses and their working, strip	
	layout, Progressive die, Compound and combination dies	
3	Joining processes: Surface preparation for joining and various types of joints; classification of welding processes - arc Welding, submerged arc welding, gas and metal arc welding, tungsten arc welding - theory and their applications; electron beam welding, ultrasonic welding, laser beam welding, resistance welding, spot, seam and projection welding processes, welding of various metals, characteristics of good weld, weld defects and weldability of metals; soldering, brazing and their applications; adhesives for joining.	12
4	Lathe: Introduction, Construction, working and operations performed on lathe, attachments and accessories, types of cutting tools, cutting parameters such as spindle speed, feed and depth of cut, Capstan and Turret lathe, automatic lathes and their construction.	09
	Total	45

Text Books:

- 1. Rao P. N. (2008), "Manufacturing Technology-Vol I", Tata McGraw Hill.
- 2. Kalpakjian S. and Schmid S. R. (2002), "Manufacturing Engineering and Technology", 4th Edition, *Pearson*.

Reference Books:

- 1. Chapman W. A. J. (2011), "Work Shop Technology- Vol I, II, III", ELBS Publishers.
- 2. Lal G. K. (2010), "Fundamentals of Manufacturing Processes", Alfa Science International.
- 3. Kou Sindo (2003), "Welding Metallurgy", Wiley Inter science.

Any other information: NIL

Details of Internal Continuous Assessment (ICA):

Test Marks: 20

Term Work Marks: 30

Details of Term work:

Term work should consist of the following:

- 1. Assignments based on the above syllabus (Min. 4).
- 2. Visit to foundry/ fabrication unit.

3. Viva Voce, Quizzes, Presentations based on syllabus.

Signature

(Prepared by Concerned Faculty/HOD)

Programa	B. Tech.	Integrated (Semester: III			
Course/N	Iodule: E	ngineering '	Thermody	ynamics	Module Cod	e: BTIME03002
	Teaching	Scheme			Evaluatio	n Scheme
Lecture Hours per week	Practical Hours per week	Tutorials Hours per week	Credit	Assess	l Continuous sment (ICA) arks - 50)	Term End Examinations (TEE) (Marks- 100 in Question Paper)
3	0	2	4	Marks	Scaled to 50	Marks Scaled to 50

Pre-requisite: Mathematics-I & II (BTIAB01002 and BTIME02001)

Objectives:

- Introduce basics of thermodynamics and concepts of work and heat transfer.
- Impart knowledge of laws of thermodynamics and their applications
- To provide understanding of properties and behavior of pure substances and gas mixtures.

Outcomes:

After completion of the course, students would be able to:

- Understand the fundamental concepts of engineering thermodynamics.
- Analyze closed systems, steady and unsteady flow systems and laws of thermodynamics and available energy.
- Determine the properties of gases and mixtures of gases and properties of pure substances.

• Use steam tables and charts for property evaluation.

	ed Syllabus: (per session plan) Description	Duration
1	Introduction: Definition, and basic concepts of engineering thermodynamics; description of matter – macroscopic description and microscopic description; thermodynamic system, surroundings and the system boundary; thermodynamic properties, processes and cycles; homogeneous and heterogeneous systems; thermodynamic equilibrium; quasi-static process; pure-substance; concepts of continuum. Pressure, Volume and Temperature: definition of pressure, volume and temperature and their measurements; Thermal equilibrium; Zeroth law of thermodynamics; – thermometric property, scale of temperature, reference points, comparison of different types of thermometers; ideal gas; gas thermometers; ideal gas temperature; Celsius temperature scale; illustrative examples. Work and Heat Transfer: Mechanics definition of work and its limitations; thermodynamics definition of work; classification of work; general expression for mechanical displacement work; expressions for various forms of work; net work transfer between a system and its surroundings; definition of heat transfer; characteristics of heat transfer.	08
2	First Law of Thermodynamics: Definition of the first law; Application of first law for a closed system undergoing a cyclic and	08

	non-cyclic process; different forms of stored energy; pure substance;	
	specific heats, Application of first law for an isolated system; first	
	law equation for steady and unsteady flow open systems.	
3	Second Law of Thermodynamics: Limitations of first law; Kelvin-	08
	Planck statement of second law; Clausius statement of second law;	
	equivalence between the two statements; reversibility and	
	irreversibility- definition of a reversible heat engine; corollaries of	
	second law of thermodynamics; reversibility and irreversibility as	
	applied to a non-cyclic process; Statement of Third Law of	
	Thermodynamics and its importance	
4	Entropy: Introduction; Clausius inequality (or Clausius theorem);	06
	Entropy as a property of a system; Temperature – entropy plot and	
	its usefulness in analyzing thermodynamic processes; entropy	
	change for an irreversible process; principle of increase of entropy;	
	Carnot cycle, entropy generation in closed and open systems; Tds	
	relations and their significance(first and second law combined),	
	Isentropic process.	
5	Available Energy, Availability and Irreversibility: classification of	05
	energy- high grade energy and low grade energy; concepts of	
	available energy, unavailable energy, availability and its application	
	to closed and open systems; second law efficiency	
6	Properties of Gases and Gas Mixtures: Avogadro's law; equation of	04
	state for a gas; ideal gas; equations of state; properties of mixtures of	
	gases- Dalton's law and Gibb's law, internal energy, enthalpy,	
	specific heats and entropy of a mixture of gases	
7	Properties of Pure Substances: p-v and p-T diagrams for a pure	06
	substance; T-s and h-s diagrams for a pure substance;	
	quality/dryness fraction; steam tables and Mollier chart, calculation	
	of thermodynamic properties such as specific volume, internal	
	energy, enthalpy, entropy and steam quality for various processes	
	using steam tables and Mollier chart.	
	Total	45

Text Books:

- 1. P. K. Nag (2008), "Engineering Thermodynamics", Tata McGraw Hill.
- 2. M. J. Moran, H. N. Shapiro, D. D. Boettner, M. B. Bailey (2011), "Fundamentals of Engineering Thermodynamics", 7th Edition, John Wiley and Sons.

Reference Books:

- Y. Cengel and M. Boles (2008), "Thermodynamics -An Engineering Approach", Tata McGraw Hill.
- 2. R. E. Sonntag, C. Borgnakke and G. J. V. Wylen (2005), "Fundamentals of Thermodynamics", 6th Edition, Wiley India.

Any other information: NIL

Details of Internal Continuous Assessment (ICA):

Test Marks: 20

Term Work Marks: 30

Details of Term work:

Term work should consist of the following:

- 1. Assignments covering syllabus (Min. 3).
- 2. Viva examination on fundamental concepts in the syllabus.

Signature

(Prepared by Concerned Faculty/HOD)

Program	B. Tech.	Integrated (Mechanic	al) Semester	r: III
Course/N	Iodule: N	fachine Sho	p - I	Module (Code: BTIME03003
	Teaching	g Scheme		Evalu	ation Scheme
Lecture Hours Per Week	Practical Hours Per Week	Tutorials Hours Per Week	Credit	Internal Contin Assessment (I (Marks-50)	CA) (TEE)
0	2	0	1	Marks Scaled t	to 50 -

Pre-requisite: Workshop Practice-I (BTIAB01007)

Objectives:

• To train the students on turning operation such as plain, taper turning, facing, thread cutting, grooving, knurling and wire drawing die on metals

Outcomes:

After completion of the course, students would be able to:

- Perform different operations on lathe like plain, taper turning, facing, grooving and knurling.
- Perform different operation on lathe like drilling, boring, counter boring, internal taper turning for making of wire drawing die.

Detailed S	vllabus:	(per session	plan)
Detailed	y ALUE GO.	(ber account	DIMILI

Unit	Description	Duration
1	Two jobs on lathe performing plain and taper turning.	08
2	Two jobs on precision turning, taper turning and screw cutting.	10
3	Assembly of Two pieces of Wire drawing die by using operations like drilling, boring, counter boring, internal taper turning.	12
	Total	30

Signature

(Prepared by Concerned Faculty/HOD)

Program	B. Tech. In	itegrated (N	Semeste	er: III	
Course/N	Module: En	gineering N	Mathemat	ics-I Module	Code: BTIME03004
	Teaching	Scheme	Evaluation	on Scheme	
Lecture	Practical	Tutorial		Internal	Term End
Hours	Hours	Hours		Continuous	Examinations (TEE)
per	per	per	Creun	Assessment (ICA)	(Marks- 100
week	week	week		(Marks - 50)	in Question Paper)
3	0	2	4	Marks Scaled to 50	Marks Scaled to 50

Objectives:

- To impart knowledge of complex numbers and its applications to solve Engineering problems.
- To provide an understanding of principles of vector algebra, single variable and multivariable calculus.

Outcomes:

After completion of the course, students would be able to:

- Understand the concepts of complex numbers, hyperbolic functions, Mean value theorems and vector products to solve Engineering problems.
- Express functions in series using Taylor's and Maclaurin's expansions, and evaluate limits of indeterminate forms using L' Höspital's Rule.
- Find partial derivatives of functions and carry out the knowledge to error and approximations, maxima and minima.
- Apply the concepts such as gradient, directional derivative, curl and divergence to solve real life problems.

Detai	led Syllabus: (per session plan)	
Unit	Description	Duration
1.	Complex Numbers:	12
	Introduction to complex numbers, modulus and amplitude of a	
	complex number, Argand's diagram, cartesian, polar and	
	exponential forms of a complex number.	
	Algebra of complex numbers: equality, addition, subtraction,	
	multiplication and division.	
	De-Moivre's theorem, Roots of complex numbers, Euler's form of	
	circular functions, Hyperbolic functions, relation between circular	
	and hyperbolic functions.	
2.	Mean value theorems, Series expansion and Indeterminate forms:	10
	Rolle's theorem, Lagrange's mean value theorem, Cauchy's mean	
	value theorem.	
	Taylor's formula, Maclaurin's series.	
	Indeterminate forms: $\frac{0}{0}, \frac{\infty}{\infty}, 0 \times \infty, \infty - \infty, 0^{0}, \infty^{0}, 1^{\infty}$ by L'Höspital's	
	rule.	
3.	Partial Derivatives and its applications:	13
	Partial Derivatives of two and three variable functions, Partial	
	derivative of composite function, Homogeneous functions in two or	

	three variables, Euler's theorem, error and approximations, Maxima and Minima in 2 variables by second derivative test.	
4.	Vectors: Scalar and vector triple products, Product of four vectors, curves in space, Differentiation of a vector function of a single scalar variable, Theorems on derivatives, concept of tangent vector, scalar and vector point functions, gradient, directional derivative, Curl and Divergence, Irrotational and Solenoidal Fields.	10
	Total	45

Text Book:

1. Erwin Kreyszig (2010), "Advanced Engineering Mathematics", Wiley Eastern Ltd, 10th edition.

Reference Books:

- 1. Andreescu Titu, Andrica Dorin (2014), Complex Numbers from A to ... Z, Birkhäuser Basel Publishers, 2nd edition.
- 2. Thomas, Calculus (2014), Pearson Education, 7th edition.
- 3. Howard Anton (2012), "Calculus", Wiley, 10th edition.
- 4. B. V. Ramana (2010), "Higher Engineering Mathematics", Tata McGraw Hill, 1st edition.
- 5. Alan Jeffrey (2003), Handbook of Mathematical Formulas and Integrals, *Academic Press*, 3rd edition.

Any other information: NIL

Details of Internal Continuous Assessment (ICA):

Test Marks: 20

Term Work Marks: 30

Details of Term work:

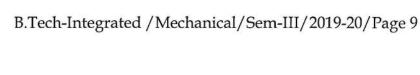
As per institute norms.

Signature

(Prepared by Concerned Faculty/HOD)

Program:	B. Tech. In	tegrated (N	d Semester:	III	
Course/N	Iodule: Ei	ngineering	Chemistr	y Module Co	ode: BTIME03005
	Teaching	Scheme		Evaluat	ion Scheme
Lecture	Practical	Tutorial		Internal	Term End
(Hours	(Hours	(Hours	Credit	Continuous	Examinations (TEE)
per	per	per	Crean	Assessment (ICA)	(Marks - 100
week)	week)	week)		(Marks - 50)	in Question Paper)
2	2	0	3	Marks Scaled to 50	Marks Scaled to 50

Objectives


- 1. To introduce basic principles of chemistry such as functional group identification, properties of solutions, and reaction stoichiometry.
- To familiarize the concepts and applications of fuels, polymers, and e-waste management.

Course Outcomes:

After completion of the course, students would be able to:

- 1. Identify different functional groups of compounds and various organic reactions associated with it.
- 2. Identify the importance of various classes of polymers and applications in daily life.
- Classify different types of fuels and lubricants based on their properties and applications;
- 4. Recognize the importance of e-waste management with respect to environment and health hazards and solve numerical problems based on atom economy and distinguish the various formula applied to different types of solutions; interpret reaction stoichiometry and solve numerical problems.

Detai	led Syllabus: (per session plan)	
Unit	Description	Duration
1.	Organic Reactions:	
	Reactions of functional groups: those containing oxygen (-COOH, -	06
	OH, -CHO, -C=O); Nucleophilic substitution reaction, Elimination	06
	reaction Organic Name Reactions E.g. Aldol & related reactions.	
2.	Solutions and Stoichiometry:	
	Types of solutions and its characteristics, properties of aqueous	
	solutions, different units for expressing concentration of solutions	
	(ppm, ppb, normality, molarity, molality, mole fraction of solute,	06
	mass fraction of solute and solvent), empirical and molecular formula	
	from elemental composition, numerical based on empirical formula,	
	normality, molarity, molarity molarity.	
3.	Fuels & Combustion:	
	Definition, Classification, characteristics. Calorific Value-Theoretical	
	& Experimental (Bomb calorimeter).	
	Solid Fuels: Coal, proximate and ultimate analysis, Numerical based	06
	on analysis of coal. (Dulong formula) and bomb calorimetry.	
	Liquid fuels: Mining of Petroleum, Cracking, Reforming, Knocking	
	in IC engines, enti-knocking agents (TEL and MTBE),	

	Total	30
6.	 i) Green Chemistry: Principles of Green Chemistry with examples (Numerical Problems on Atom economy) ii) E-waste management: Definition, classification and management of e-waste. 	03
5.	Polymers: Introduction and definition of important terms – monomer, polymer, polymerization, degree of polymerization, tacticity, and melting-glass transition temperature. Some commercially important polymers (PP, PVC). Plastics: Thermosetting & Thermoplastics, Compounding of plastics, Preparation, properties and applications of commercial plastics (Rubber, Phenol formaldehyde resin).	05
4.	Lubricants: Definition, Mechanism of lubrication, Properties- viscosity, viscosity index, flash & fire, cloud & pour points, oiliness, saponification & acid value (numericals based on saponification and acid value)	04

Text Books:

- 1. Abhijit Mallick; Chemistry for Engineers, Viva books, 2nd Edition 2017.
- Palanna.O.G., Engineering Chemistry, Tata McGraw Hill Education. Pvt. Ltd, 2nd Edition 2017.
- 3. Samir Sarkar; Fuels & Combustion, Orient Longman Pvt. Ltd 3rd Edition 2009.

Reference Books:

- 1. R.T. Morrison & R. N. Boyd, Organic Chemistry, Prentice Hall, 8th Edition 2016.
- 2. Johrie. R.; E-waste, TERI Press, 2009.
- 3. Paul C. Hiemenz & Timothy P. Lodge; Polymer Chemistry, CRC Press, 2nd Edition 2007.

Any other information:

Details of Internal Continuous Assessment (ICA)

Test Marks: 20

Term Work Marks: 30

Details of Term work:

- 1. Minimum Eight Lab experiments to be taken.
- 2. Unit wise assignments to be taken.

3. Presentation/Viva-voce/Quiz to be conducted.

NMIMS MUMBAI

Signature

(Prepared by Concerned Faculty/HOD)

Program: I	3. Tech. Integ	grated (Mech	nanical)	Semester:	III
Course/Module: Constitution of India			dia	Module Co	de: BTIME03006
	Teaching	Scheme		Evaluatio	on Scheme
Lecture Hours per week	Practical Hours per week	Tutorial Hours per week	Credit	Internal Continuous Assessment (ICA) (Marks - 50)	Term End Examinations (TEE) (Marks - 100 in Question Paper)
2	0	0	0	Marks Scaled to 50	

Objective:

- To understand the basic aspects of the constitution of India, the evolution, the directive principle & important provisions.
- To understand the implications of important constitutional provision on Business and Professionals.

Outcomes:

After completion of the course, students would be able to:

- Learn basic aspects of constitution of India.
- Apply Constitutional provision on Business and their Professionals.

Detailed Syllabus: (per session plan)

Unit	Description	Duration
1.	The Constitution, its evolution and Preamble to the Constitution.	04
2.	Fundamental rights and duties, exceptions with examples, individual responsibilities and duties, application to business.	10
3.	Directive principles of State Policy, its emphasis and its impact as related to business.	04
4.	Indian Judiciary and LokAdalats.	06
5.	Emergency Provisions under Article 352 - 360.	04
6.	Voting behaviour in India and present political scene. Responsibility of Business in relation to the Constitution.	02
	Total	30

Text Books:

1. Durga Das Basu (2009), "Indian Constitution", 20th Edition.

Reference Books:

- 1. N. A. Palkhiwala (2009), "We the People".
- 2. Justice Hidayatullah (2009), "Indian Constitution".

Any other information:

Details of Internal Continuous Assessment (ICA)

Test Marks: 20

Term Work Marks: 30 Details of Term work:

1. Assignments / Case studies

2. Two class tests.

Signature

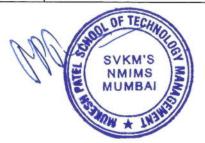
(Approved by Dean)

Signature

(Prepared by Concerned Faculty/HOD)

Program: B.Tech. Integrated (Mechanical)				l) Semester :	Semester : III	
Course/Module: Engineering Mechanics				Module Code : BTIME03007		
,	Teaching	Scheme		Evaluatio	n Scheme	
Lecture Hours per week	Practical Hours per week	Tutorial Hours per week	Credit	Internal Continuous Assessment (ICA) (Marks - 50)	Term End Examinations (TEE) (Marks - 100 in Question Paper)	
3	0	2	4	Marks Scaled to 50	Marks Scaled to 50	

Objectives:


- · To develop thorough understanding of moment of inertia
- To know the concept of pin jointed frames
- To get acquainted with the dynamic system in equilibrium and the motion characteristics of particles
- To study the forces developed on bodies in motion

Outcomes:

After successful completion of this course, students should be able to

- Determine moment of inertia for plane areas
- Analyse pin jointed frames
- Evaluate the velocity, acceleration and displacement of a moving body
- Analyse the forces developed on the moving body

Detai	led Syllabus:	
Unit	Description	Duration
1.	Moment of inertia of plane areas: Moment of inertia of plane	04
	areas, parallel axis theorem. Introduction to polar moment of	
	inertia, product of inertia and mass moment of inertia.	
2.	Analysis of pin jointed plane frames: Perfect truss, method of	06
	joints, and method of section.	
3.	Forces in space: Rectangular components of forces in space,	07
	resultant of concurrent forces, moment of a forces about a point	
	and a given axis, resultant of general force system, Equilibrium of	
	a particle in space.	
4.	Principle of virtual work: Application to determine the reactions	04
	of determinate beams with/ without internal hinges	
5.	Kinematics of particle: Motion along plane curved path,	10
	tangential and normal component of acceleration, simple	
	harmonic motion.	
	Kinematics of rigid bodies: Translation, pure rotation and plane	
	motion of rigid bodies, instantaneous centre of rotation for the	
	velocity for bodies in plane motion, link mechanisms (upto two	
	links).	
6.	Kinetics of particles: Newton's laws of motion, D'Alembert's	08
	principle, equation of dynamic equilibrium, linear motion,	
	curvilinear motion.	

	Kinetics of rigid bodies: D'Alembert's principle for bodies under translational motion, rotational motion about a fixed axis and plane motion Application to motion of bars, cylinders, spheres.	
7.	Energy and momentum principles: Work done by a force, potential and kinetic energy, power, work energy equation, principle of conservation of energy, momentum, principle of conservation of momentum, impact of solid bodies, elastic impact, semi-elastic impact and plastic impact.	06
	Total	45

Text Book:

- 1. N. H. Dubey (2014), "Engineering Mechanics", Tata McGraw Hill
- 2. R. C. Hibbler (2004), "Engineering Mechanics", McMillan Publishers

Reference Books:

- 1. F. L. Singer (1954), "Engineering Mechanics", Harper & Raw Publication (Classic book)
- 2. Beer & Johnson (2011), "Engineering Mechanics", Tata McGraw Hill
- 3. D. S. Kumar (2009), "Engineering Mechanics", Tata McGraw Hill
- 4. Macklin & Nelson (2012), "Engineering Mechanics", Tata McGraw Hill
- 5. A. K. Tayal (2008), "Engineering Mechanics", Umesh Publication
- 6. E. W. Nelson, Charles L. Best, W.G. Mclean, Merle Potter (2010), "Schaum's outlines on Engineering Mechanics -Statics", *Tata McGraw Hill*

Any other information:

Details of Internal Continuous Assessment (ICA)

Test Marks: 20

Term Work Marks: 30

Details of Term work:

Term work should consists of the following

1. Minimum eight assignments covering the prescribed syllabus.

Signature

(Prepared by Concerned Faculty/HOD)